
Contents

1 Introduction to the ALPHA Versions 1

2 Introduction 3

2.1 Typographical Conventions : 5

2.2 The Linux Documentation Project : 5

2.3 Copyright, Trademarks, Other Legalese : 6

3 A Short Tutorial 7

3.1 About root, Hats, and the Feeling of Power : 7

3.2 Booting and Shutting Down : 8

3.3 Creating and Removing Users : 9

3.4 Using Floppies and Making Backups : 9

3.5 Installing New Software : 9

3.6 What To Do In An Emergency? : 10

4 Using Disks and Other Storage Media 13

4.1 De�nitions of Terms : 13

4.1.1 Hard Disks, Floppies, Other Types of Media : : : : : : : : : : : : : : : : : : 13

4.1.2 Formatting : 13

4.1.3 Partitions : 13

4.1.4 Filesystems : 14

4.1.5 Disk Bu�ering : 15

4.1.6 Virtual Memory and Swap Space : 15

4.2 Preparing a Hard Disk For Use : 15

4.2.1 Formatting : 15

i

ii ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

4.2.2 Partitioning : 15

4.3 Preparing a Floppy For Use : 15

4.3.1 Selecting Floppy Type : 15

4.3.2 Formatting : 16

4.4 Using a Filesystem : 16

4.4.1 Types of Filesystems : 16

4.4.2 Selecting a Filesystem : 17

4.4.3 A Comparison Between Ext2fs and Xiafs : 17

4.4.4 Making a Filesystem : 20

4.4.5 Mounting and Unmounting : 20

4.5 Using Swap Space : 21

4.5.1 Creating a Swap Space : 21

4.5.2 Putting Swap Space Into Use : 22

4.5.3 Sharing Swap Space With Other Operating Systems : : : : : : : : : : : : : 22

4.6 Using Raw Floppies : 22

4.7 The Bu�er Cache : 22

4.8 Allocating Disk Space : 23

4.8.1 Partitioning Schemes : 23

4.8.2 Space For Files : 23

4.8.3 Swap Space : 23

4.8.4 Adding More Disk For Linux : 24

4.8.5 Tips For Saving Disk Space : 24

5 Directory Tree Overview 25

5.1 The /etc and /usr/etc Directories : 25

5.2 Devices, /dev : 28

5.3 The Program Directories, /bin, /usr/bin, and Others : : : : : : : : : : : : : : : : 28

5.4 The /usr/lib Directory : 29

5.5 Shared Library Images, /lib : 30

5.6 C/C++ Programming, /usr/include, /usr/g++include : : : : : : : : : : : : : : 31

5.7 Source Codes, /usr/src : 31

5.8 Administrativia, /usr/adm : 31

5.9 On-line Manuals, /usr/man : 32

ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION iii

5.10 More Manuals, /usr/info : 32

5.11 /home, Sweet /home : 32

5.12 Temporary Files, /tmp and /usr/tmp : 33

5.13 The /mnt and /swap Directories : 33

5.14 Process Information, /proc : 33

5.15 The /install Directory : 34

6 Boots, Shutdowns, Logins, and Background Demons 35

6.1 Booting : 35

6.2 Shutting Down : 37

6.3 Background Processes and Demons : 39

6.4 Logging In : 40

iv ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

Chapter 1

Introduction to the ALPHA

Versions

This is an ALPHA version of the Linux System Administrator's Guide. That means that I don't

even pretend it contains anything useful, or that anything contained within it is factually correct.

In fact, if you believe anything that I say in this version, and you are because of it, I will cruelly

laugh at your face if you complain.

Well, almost. I won't laugh, but I also will not consider myself responsible for anything.

The purpose of an ALPHA version is to get the stu� out so that other people than just the

author can look at it and comment on it. The latter part is the important one: Unless the author

gets feedback, the ALPHA version isn't doing anything good. Therefore, if you read this `book',

please, please, please let me hear your opinion about it. I don't care whether you think it is good or

bad, I want you to tell me about it.

If at all possible, you should mail your comments directly to me, otherwise there is a largish

chance I will miss them. If you want to discuss things in public (comp.os.linux or the mailing list),

that is ok by me, but please send a copy via mail directly to me as well.

I do not much care about the format in which you send your comments, but it is essential that

you clearly indicate what part of my text you are commenting on.

I can be contacted at one of the following e-mail addresses:

lars.wirzenius@helsinki.fi

wirzeniu@cc.helsinki.fi

wirzeniu@cs.helsinki.fi

wirzeniu@kruuna.helsinki.fi

wirzeniu@hydra.helsinki.fi

(they're all actually the same account, but I give all these, just in case there is some weird problem).

1

2 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

Note, however, that I will be mostly out of touch with the net until the beginning of September. I

will only read my mail every now and then, so do not be alarmed if I do not answer at once.

This text contains a lot of notes that I have inserted as notes to myself. They are identi�ed with

`META: '. They indicate things that need to be worked on, that are missing, that are wrong, or

other things like that. They are mostly for my own bene�t and for your amusement, they are not

things that I am hoping someone else will write for me.

Parts of the chapters in this version are still unwritten. If someone wishes to �ll things in, I'm

glad to have it, but I will proabably write it myself, anyway (mixing text from several people in one

chapter usually makes for a less good manual). If you are serious about wanting to write a whole

chapter or more, please contact me for ideas.

If you think that this version of the manual is missing a lot, you are right. I am including only

those chapters that are at least half �nished. New chapters will be released as they are written.

For reference: This is ALPHA version 1, hopefully released 1993-07-21.

Chapter 2

Introduction

This manual, the Linux System Administrator's Guide, describes the system administration aspects

of using Linux. It is intended for people who know next to nothing about system administration (as

in \what is it?"), but who already master at least the basics of normal usage, which means roughly

the material covered by the (as yet unpublished) Linux User's Guide. This manual also doesn't tell

you how to install Linux, that is described in the Getting Started document. There is some overlap

between all manuals, however, but they all look at things from slightly di�erent angles. See below

for more information about Linux manuals.

What, then, is system administration? It is all the things that one has to do to keep a computer

system in a useable shape. Things like backing up �les (and restoring them if necessary), installing

new programs, creating accounts for users (and deleting them when no longer needed), making

certain that the �lesystem is not corrupted, and so on. If a computer were a house, say, system

administration would be called maintenance, and would include cleaning, �xing broken windows,

and other such things. System administration is not called maintenance, because that would be too

simple.

1

The structure of this manual is such that many of the chapters should be usable independently,

so that if you need information about, say, backups, you can read just that chapter. This hopefully

makes it easier to use it as a reference manual as well, and make it possible to read just a small part

when needed, instead of having to read everything. We have tried to create a good index as well, to

make it easier to �nd things. However, this manual is �rst and foremost a tutorial, and a reference

manual only as a lucky coincidence.

This manual is not intended to be used completely by itself. Plenty of the rest of the Linux

documentation is also important for system administrators. After all, a system administrator is just

a user with special privileges. A very important resource are the man pages, which should always

be consulted when a command is not familiar. (Unfortunately, as of this writing, the state of the

Linux man pages is not very encouraging. Things are improving, however.)

While this manual is targeted at Linux, a general principle has been that it should be useful

1

There are some people who do call it that, but that's just because they have never read this manual, poor things.

3

4 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

with other UNIX based operating systems as well. Unfortunately, since there is so much variance

between di�erent versions of UNIX in general, and in system administration in particular, there

is little hope for us to cover all variants. Even covering all possibilities for Linux is di�cult, due

to the nature of its development. There is no one o�cial Linux distribution, so di�erent people

have di�erent setups, many people have a setup they have built up themselves. When possible, we

have tried to point out di�erences, and explain several alternatives. The SLS distribution (by Peter

MacDonald and Softlanding Systems) is fairly complete and contains most things that are usually

needed, and as much of it as possible comes precon�gured. Other Linux distributions provide

similar (but di�erent) kits. In order to cater to the hackers and DIY types that form the driving

force behind Linux development, we have tried to describe how things work, rather than just listing

\�ve easy steps" for each task. This means that there is much information here that is not necessary

for everyone, but those parts are marked as such and can be skipped if you use a precon�gured

system. Reading everything will, naturally, increase your understanding of the system and should

make using and administering it more pleasant.

Like all other Linux related development, the work was done on a volunteer basis: we did it

because we thought it might be fun and/or because we felt it should be done. However, like all

volunteer work, there is a limit to how much e�ort we have been able to spend on this work, and

also on how much knowledge and experience we have. This means that the manual is not necessarily

as good as it would be if a wizard had been paid handsomely to write it and had spent a few years to

perfect it. We think, of course, that it is pretty nice, but be warned. Also, on the general principle

that no single source of information is enough, we have compiled a short bibliography of books,

magazines, and papers related to UNIX system administration.

One particular point where we have cut corners and reduced our workload is that we have not

covered very thoroughly many things that are already well documented in other freely available

manuals. This applies especially to program speci�c documentation, such as all the details of using

mkfs(8); we only describe the purpose of the program, and as much of its usage as is necessary

for the purposes of this manual. For further information, we refer the gentle reader to these other

manuals. Usually, all of the referred to documentation is part of the full Linux documentation set.

While we have tried to make this manual as good as possible, we would really like to hear from

you if you have any ideas on how to make it better. Bad language, factual errors, ideas for new

areas to cover, rewritten sections, information about how various UNIX versions do things, we are

interested in all of it. The maintainer of the manual is Lars Wirzenius. You can contact him via

electronic mail with the Internet domain address lars.wirzenius@helsinki.fi, or by traditional

paper mail using the address

Lars Wirzenius / Linux docs

Ohratie 16 C 198

SF-01370 VANTAA

Finland

(this contact information should be valid in 1993 and for at least a couple of years more, but probably

won't be after �ve years or so).

ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION 5

The L

a

T

E

X source code for this manual and other manuals of the Linux documentation set,

as well as pre-formatted versions for popular output media, are available in electronic form on a

number of anonymous FTP sites on the Internet. The most important ones are tsx-11.mit.edu,

sunsite.unc.edu, and nic.funet.fi. The Getting Started guide has a more complete list, as well

as a list of other sources, and instructions on how to get the �les.

This manual may be copied according to the GNU Public License, version 2 (or, at your option,

any later version), with the exception that distributors of printed versions do not have to provide

source code as long as the above instructions on how the get it are included verbatim.

2.1 Typographical Conventions

Bold Used to mark new concepts,WARNINGS, and keywords in a language.

italics Used for emphasis in text, and occasionally for quotes or introductions at the be-

ginning of a section.

slanted Used to mark meta-variables in the text, especially in representations of the

command line. For example,

ls -l foo

where foo would \stand for" a �lename, such as /bin/cp.

Typewriter Used to represent screen interaction, as in

$ ls -l /bin/cp

-rwxr-xr-x 1 root wheel 12104 Sep 25 15:53 /bin/cp

Also used for code examples, whether it is \C" code, a shell script, or something

else, and to display general �les, such as con�guration �les. When necessary for

clarity's sake, these examples or �gures will be enclosed in thin boxes.

Key Represents a key to press. You will often see it in this form:

Press return to continue.

3 A diamond in the margin, like a black diamond on a ski hill, marks \danger" or

\caution." Read paragraphs marked this way carefully.

2.2 The Linux Documentation Project

The Linux Documentation Project, or LDP, is a loose team of writers, proofreaders, and editors

who are working together to provide complete documentation for the Linux operating system.

The overall coordinator of the project is Matt Welsh, who is heavily aided by Lars Wirzenius and

Michael K. Johnson.

6 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

This manual is one in a set of several being distributed by the LDP, including a Linux Users'

Guide, System Administrators' Guide, Network Administrators' Guide, and Kernel Hackers' Guide.

These manuals are all available in L

a

T

E

X source format, .dvi format, and postscript output by

anonymous FTP from nic.funet.fi, in the directory /pub/OS/Linux/doc/doc-project, and from

tsx-11.mit.edu, in the directory /pub/linux/docs/guides.

We encourage anyone with a penchant for writing or editing to join us in improving Linux docu-

mentation. If you have Internet e-mail access, you can join the DOC channel of the Linux-Activists

mailing list by sending mail to

linux-activists-request@niksula.hut.fi

with the line

X-Mn-Admin: join DOC

in the header or as the �rst line of the message body.

2.3 Copyright, Trademarks, Other Legalese

UNIX is a trademark of Unix System Labratories

Linux is not a trademark, and has no connection to UNIX

TM

or Unix System Labratories.

Copyright
c
 1993 Lars Wirzenius

Ohratie 16 C 198, SF-01370 Vantaa, FINLAND

lars.wirzenius@helsinki.fi

Linux System Administrator's Guide may be reproduced and distributed in whole or in part, subject

to the following conditions:

0. The copyright notice above and this permission notice must be preserved complete on all

complete or partial copies.

1. Any translation or derivative work of Linux System Administrator's Guide must be approved

by the author in writing before distribution.

2. If you distribute Linux System Administrator's Guide in part, instructions for obtaining the

complete version of this manual must be included, and a means for obtaining a complete

version provided.

3. Small portions may be reproduced as illustrations for reviews or quotes in other works without

this permission notice if proper citation is given.

Exceptions to these rules may be granted for academic purposes: Write to Lars Wirzenius, at

the above address, or email lars.wirzenius@helsinki.fi, and ask. These restrictions are here to

protect us as authors, not to restrict you as educators and learners.

Chapter 3

A Short Tutorial

This chapter is a quick introduction to and overview of Linux system administration. It appears in

two places in the Linux documentation: in the System Administrator's Guide, and in the Getting

Started manual. The reason for this is not because the authors have discovered cut-and-paste in the

editor, but because we think that it serves a useful purpose in both places, and because we do not

want readers of either manual to have to �nd the other manual in order to read this part.

We have tried to cover here the most important things about system administration you need to

know when you use Linux, in su�cient detail to get you comfortably started. In order to keep it

short and sweet, we have only covered the very basics, and have skipped many an important detail,

so you really should read the whole System Administrator's Guide, if you are serious about using

Linux. It will help you understand better how things work, and how they hang toghether. At least

skim through it so that you know what it contains and know what kind of help you can expect from

it.

This chapter assumes that your system is up and running, so there are no installation instructions

as such here. See the Getting Started manual for those.

3.1 About root, Hats, and the Feeling of Power

Linux di�erentiates between di�erent users, so that what they do to each other and to the system

can be regulated (one wouldn't want anybody to be able to read one's love letters, for instance). Each

user is given an account, which includes a username, home directory, and so on. In addition to the

real people, there are special accounts, or special imaginary users, which have special privileges. The

most important of these is the root account, for an imaginary user called root. Ordinary users are

generally restricted so that they can't do harm to anybody else on the system, just to themselves.

1

They are, for example, not allowed to remove programs installed in /bin or /usr/bin, or to change

the programs there, or to look at other people's �les (unless those people explicitly allow it by setting

1

It does happen that an ordinary user can cause a lot of trouble. Usually this is due to some bug, or miscon�gured

system software.

7

8 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

the permissions of their �les and directories to a friendlier level).

There are no such restrictions on root. He (the person using that account, that is) can read

any �le, change any �le, remove any �le, change permissions and ownerships of any �le to anything,

format the hard disk, and so on. The basic idea is that the person or persons who take care of a

system logs in as root whenever it is necessary to do system administration work that can't be done

as a normal user. However, since root can do anything, it is easy for him to make mistakes that

have catastrophic consequences. A simple, innocent

rm -rf * DON'T DO THIS

which for an ordinary user might only wipe out some unimportant thesis (or whatever he's been doing

the last �ve years), could remove every single �le in the system if given by root. This possibility

of truly horrendous mistakes means two things: don't make mistakes, and be prepared to �x those

that you do anyway. The best way to avoid doing really bad mistakes is to not do things as root if

you can avoid it.

That last advice is so good it deserves to be repeated and highlighted:

Don't do things as root if you can avoid it!

Put another way, if you picture using the root account as wearing a special magic hat that gives

you lots of power, so that you can, by waving your hand, destroy entire cities, it is a good idea to be

a bit careful about what you do with your hands. Since it is easy to move your hand in a destructive

way by accident, it is not a good idea to wear the magic hat when it is not needed, despite the

wonderful feeling.

3.2 Booting and Shutting Down

The simplest way to boot is to use a boot oppy. This involves having the kernel on a oppy and

have that oppy in the �rst oppy drive when you turn on the power (or after you do a reset or

ctrl-alt-del). The kernel will then automagically load itself from the oppy and that's that.

Another way is to use LILO, or another boot loader, a program that resides in the boot sector

of your hard disk (or hard disk partition), and is automatically started if there is no oppy in the

�rst oppy drive. LILO (or whatever) will then load Linux from the hard disk and everything will

be jolly.

Shutting down a running Linux system is a bit trickier than shutting down an MS-DOS system,

but not much. The best way is to use the shutdown(8) command. First quit all programs you run

and log out from all sessions, then log in as root and give the command

shutdown when

where when is be the number of minutes to wait before shutting down, or the word now, which means

just that. shutdown will ask for a message to be displayed on terminals where people are still logged

in (this is useful on machines where there are many users at a time, but pretty useless for single

ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION 9

user machines), wait the speci�ed time, and then kill all system processes, write out any unwritten

data in the disk cache, and do other things to ensure that the system goes down properly, without

doing harm. After this is done, shutdown prints a message that you can cut the power. Don't do

it before this message has been printed out! If you cut the power too early, not everything may be

ready for it, and you might cause the disk contents to become garbled (not always in immediately

visible ways, either).

3.3 Creating and Removing Users

Each person using the system should have his or her own account. It is seldom a good idea to have

several people use the same account.

The easy way to add users is to use an interactive command that asks for the required infor-

mation and then updates the system �les automatically. The command is usually called adduser,

or useradd, depending on what software is installed. You should be able to just run them and

answer the questions. See the man pages for more information. The chapter \Users" in the System

Administrator's Guide describes the process in more detail, including what �les should be modi�ed

and how.

Similarly, to remove users, use the command deluser or userdel, and answer the questions.

3.4 Using Floppies and Making Backups

Floppies are usually used pseudo-tapes under Linux. This means that the sectors on the oppy

are arranged in some linear order, and those are treated as if they were back to back on a tape.

Typically, you use tar(1) to handle the oppies. It is also possible to use the oppies as disks, or

course, in which case you need to create a �lesystem on them with mkfs(8), just as on the hard

disk. Then you mount the oppy when you want to use it, and umount it when you are done.

Backups are often done on oppies using the command

tar -cf /dev/fd0 -M

where /dev/fd0 is the name of the device for the oppy you want to use. tar will prompt you

for a new oppies when the previous one �lls up. The same method can be used for tapes, just

substitute the name of the tape for /dev/fd0. Other ways are described in chapter on backups in

the Administrator's Guide.

3.5 Installing New Software

The SLS distribution of Linux has the command sysinstall for installing new packages on the

system. It is usually used as

sysinstall -install package.tgz

10 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

where package.tgz is the name of the compressed tar �le that contains the package. This method can

be used both for SLS packages, and other packages that follow the same conventions: the package

should be unpacked as root in the root directory, and all �les will then drop into the correct places.

sysinstall also keeps a log of what �les have been installed by it, so that the whole package can

be uninstalled by

sysinstall -remove packagename

See the man page for sysinstall for more information.

Instead of using sysinstall, you can also just use the command

cd /; tar xzvf package.tar.Z

which is the essence of sysinstall. This becomes necessary for those packages that should not be

unpacked in the root directory, but in some place else instead, typically /usr or /usr/local.

However, before you start wildly unpacking things, you should look at the contents of a package

with

tar tzvf package.tar.Z

just in case it is funny (perhaps it overwrites /etc/passwd, and then what do you do?).

The above methods are good for binary distributions. Some programs are distributed in source

code only, and they have to be installed in a di�erent way. Put simply, you �rst unpack all the

sources in a directory dedicated for them, compile the sources, then copy the executable �les and

other �les to their proper places. In practice, things can get much more tricky than this, especially

if the program was not written for the operating system, compiler and libraries you use. If there are

problems, you often have to be a programmer to solve them. Before you start porting, ask around

(in comp.os.linux, for example) to see if anyone already has ported the program, or something

similar.

3.6 What To Do In An Emergency?

META: Using boot and root disks. Running fsck manually, from root disk for root fs on hard

disk.

META: what to do if you have lost the root password

What should you do if something really bad happens? To begin with, keep calm. Panic and

desperation don't help. It is much easier to be calm if you have little to lose when the computer

goes crazy, of course, so being prepared and making it impossible to lose everything in one disaster

is a good way to keep one's calm. Refer to a previous section in this chapter for information about

making backups. If you always have backups of everything, the worst thing that can happen is that

you have to install everything from scratch.

It is not always necessary to install from scratch, of course. Often one can �x the problem by

editing some �le, or installing only a few programs anew. It is fairly easy to make it impossible

to boot or login as root|by removing /etc/getty, for example|so an alternative, known-to-work

ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION 11

way to boot and login is a good thing to have. The best way is to prepare a special oppy or two

that can be booted and that has enough tools that you can repair any damage. See the appropriate

chapter in the Administrator's Guide for instructions on how to create one. The installation oppies

of most Linux distributions work also.

12 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

Chapter 4

Using Disks and Other Storage

Media

This chapter tells about di�erent types of storage media (hard disks and oppies) and about some

ways of using them. Unfortunately, because I lack the equipment, I cannot tell you much about

using other types of media, such as tapes or CD-ROMs.

4.1 De�nitions of Terms

We'll begin by explaining the important concepts. If you already know what a partition and a

�lesystem are, you can probably skip this section. Even if you do read this section, be aware that

there is a lot of detail here, and that it is su�cient to understand the principles.

4.1.1 Hard Disks, Floppies, Other Types of Media

META: hd: cylinders, tracks, sectors, heads, platters, disk surfaces; translations

4.1.2 Formatting

META: why is it necessary; what does it do; what kinds of disks do not need formatting

4.1.3 Partitions

A hard disk can be divided into several partitions. Each partition functions as if it were a separate

hard disk. The idea is that if you have one hard disk, and want to have, say, two operating systems

on it, you can divide the disk into two partitions and each operating system uses its partition as it

wishes and doesn't touch the other one's. This way the two operating systems can co-exist peacefully

on the same hard disk; without partitions one would have to buy a hard disk for each operating

13

14 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

system. Usually only hard disks are partitioned, oppies are not (do not know about CD-ROMs

and other disks).

The information about how a hard disk has been partitioned is stored in its �rst sector (that

is, the �rst sector of the �rst track on the �rst disk surface). The �rst sector is the master boot

record of the disk; this is the sector that the BIOS reads in and starts when the machine is �rst

booted. The master boot record contains a small program which reads the partition table, checks

which partition is active (that is, marked bootable), and reads the �rst sector of that partition, the

partition's boot sector. The boot sector contains another small program which reads (the �rst

part of) the operating system stored on that partition (assuming it is bootable), and then starts it.

The partitioning scheme is not built into the hardware, or even into the BIOS. It is only a

convention that many operating systems follow. Not all operating systems do follow it, however, but

they are the exceptions. Some operating systems support partitions, but they occupy one partition

on the hard disk, and use their internal partitioning method within that partition.

Floppies are not partitioned. There is no technical reason against this, but since they're so small,

partitions would be useful only very rarely.

META: explain extended partitions: a way to circumvent the maximum of 4 partitions in the

original design; partition id

META: explain partition types (the partition type byte in the partition table) and that it is

ignored by Linux but that some other OS's do not ignore it; DR-DOS strips hibit.

META: �gure: show a hard disk layout, with the �rst sector in detail

4.1.4 Filesystems

A �lesystem is the methods and data structures that an operating uses to keep track of �les on a

partition (or disk, if it is not or cannot be partitioned), that is the way the �les are organized on

the disk. The word is also used to refer to a partition or disk that is used to store the �les or the

type of the �lesystem. Thus, one might say \I have two �lesystems" meaning one has two partitions

on which one stores �les, or that one is using the \extended �lesystem", meaning the type of the

�lesystem.

The di�erence between a disk or partition and the �lesystem it contains is important: programs

which operate on a disk or partition will usually operate on the raw disk sectors directly, completely

disregarding whatever �lesystem there might be. Programs and operations which require a �lesystem

won't work on a partition that doesn't contain one (or that contains one of the wrong type). Also,

using a partition at the same time both as a �lesystem and as a raw bunch of sectors will often lead

to trouble.

Before a partition or disk can be used to store �les, it needs to be initialized, the bookkeeping

data structures need to be written to the disk. This process is usually called making a �lesystem

in UNIX circles, and formatting in|among others|MS-DOS circles (although, strictly speaking,

formatting is the task of magnetically initializing a disk, and is actually separate from making a

�lesystem).

ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION 15

META: Explain basics of Unix �lesystem structure (superblock, inodes, data blocks, dis-

tributed superblocks and inodes) and that DOS is di�erent

4.1.5 Disk Bu�ering

Reading from a disk, of any type (except a RAM disk), is very slow, when compared to accessing

RAM memory. If one happens to have some extra memory, it is usually worth it to use that to

remember to the data one just read from the disk. This way, if one happens to need the same

information twice, one can just fetch the remembered data instead of having to go all the way to

the hard disk to read it. This is the principle of disk bu�ering. It is described in more detail below,

in section 4.7, \The Bu�er Cache".

4.1.6 Virtual Memory and Swap Space

Linux supports virtual memory, i.e. using a part of the hard disk as an extension of RAM so that the

e�ective size of usable memory grows correspondingly. The kernel will write the contents of a not-

right-now used part of memory to the hard disk so that the memory can be used for another purpose.

When the original contents are needed again, they are read back into memory (not necessarily to

the same place). This is all completely transparent to the user; programs running under Linux only

see the larger amount of memory available and don't notice that parts of them reside on the hard

disk from time to time. Of course, reading and writing the hard disk is slower (on the order of a

thousand times slower) than using real memory, so the programs don't run as fast. The part of the

hard disk that is used as virtual memory (as this is called) is called the swap space.

4.2 Preparing a Hard Disk For Use

4.2.1 Formatting

META: IDE/SCSI: not really needed; is there a program for HD formatting?; bad blocks are

handled by the controller or mkfs or mkswap

4.2.2 Partitioning

META: fdisks for di�erent operating systems: use each one's own; beware of starting partitions

at non-track boundaries; non-destructive re-partitioning

4.3 Preparing a Floppy For Use

4.3.1 Selecting Floppy Type

META: proper device �le; automatic selection; setfdprm

16 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

4.3.2 Formatting

META: fdformat

4.4 Using a Filesystem

4.4.1 Types of Filesystems

Linux supports several types of �lesystems. As of this writing they are:

minix-1 The `original' Linux �lesystem. Linux was �rst developed on Andrew Tanenbaum's

Minix operating system, and it was natural for Linus to use the Minix �lesystem

layout instead of inventing his own (the code was all his, only the layout was the

same)

1

. The `-1' is used here to di�erentiate between other versions (some developed

for Linux, others for Minix). The minix-1 �lesystem is usually considered to be the

most stable one, as it has been in use longer than the others. It is fast, but only

supports one of the time �elds for �les (the time of the last modi�cation; the times

for the last access and last modi�cation of the inode are missing), partitions up

to 65 megabytes, and, perhaps most importantly, limits �lenames to 14 characters.

Linux extends the Minix version by adding symbolic links.

minix-30 This is an enhanced version of the minix-1 �lesystem, developed for Linux. The

only di�erence is that �lenames can be 30 characters long. (Actually, minix-1 and

minix-30 are the same �lesystem for the kernel, and the kernel allows any length,

up to 30, for the �lenames. Since other programs|most notably Minix itself|only

understand 14 character names, that case is kept separate and is given a separate

name.)

extfs The `extended �lesystem', developed by Remy Card. It is originally based on the

minix-1 �lesystem by Linus, but doesn't have much to do with it anymore. extfs

adds �lenames up to 255 characters, the two missing times, and support for par-

titions up to XXX gigabytes. It is slower than the minix �lesystems, ext2fs or

xiafs.

ext2fs The `second extended �lesystem', also developed by Remy Card. It is a rewrite

of extfs, with improved algorithms (greatly improving the speed over extfs) and a

modi�ed layout on the disk that allows for future growth (the layout has room for

a lot of things that are at most planned). Ext2fs is the most featureful of the Linux

�lesystems.

xiafs This is a modi�cation of the minix-1 �lesystem that allows for longer �lenames (up

to 255 characters) and larger partitions (up to XXX megabytes), but doesn't have

much more new things. Written by Frank Xia. It is perhaps the fastest �lesystem,

1

Especially since he only had 40 MB of hard disk, and didn't have room for another partition:: :

ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION 17

but still su�ers from the single time �eld in the inode that the minix-1 �lesystem

allows.

procfs This is not really a �lesystem in the traditional sense at all, in that it doesn't give

access to �les stored on a disk. Instead, it is a `phantom' �lesystem, where �les

and directories are created by the kernel (more accurately, the procfs driver in the

kernel) based on various data structures in the kernel. Most importantly, it creates

a directory for each running process, each directory containing a few �les that

contain information about the process. This way it is easy to access information

about processes. In traditional Unices, one has to access the /dev/kmem special �le

(a special �le that is an image of all the memory from the kernel's point of view),

which is both cumbersome and a security risk. With the procfs, the access to the

information is controlled.

In addition to providing information about processes, the procfs also provides access

to various other information that the kernel maintains. See the procfs(5)man page

for more information.

dosfs This gives access to the FAT �lesystem used by MS-DOS. It is only useful if you

need to access oppies or hard disk partitions that have that �lesystem.

xenixfs Another �lesystem for accessing �les from another operating system. This time the

Xenix operating system.

A note about the two extended �lesystems, and extended partitions: Do not confuse the two! An

extended partition, and the two extended �lesystems have nothing in common. In particular, the

extended �lesystems do not need to be installed on an extended partition.

META: explain 90% full in ext2fs

4.4.2 Selecting a Filesystem

META: give advice about which �lesystem should be used

META: give some speed comparisons (iozone?)

META: give a feature chart

4.4.3 A Comparison Between Ext2fs and Xiafs

The following is the essentials of a comparison between ext2fs and xiafs posted by Stephen Tweedie

(e-mail address sct@dcs.ed.ac.uk) to the Usenet newsgroup comp.os.linux.announce on May

13, 1993 (so it may not be quite up to date any longer). The rest of the text in this paragraph is

from the comparison, with minor edits by the editor of the book.

18 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

History

The original Linux �lesystem was a simple copy of the Minix operating system's own �lesystem. It

inherited Minix's restrictions of 14 character �lenames and 64 MB partitions, but has since been

enhanced to support �lenames of up to 30 characters. It is the oldest and most trusted of the Linux

�lesystems.

In an e�ort to lift the �lename and partition restrictions of the Minix fs, RemyCard developed the

extfs. This supports 4 GB �les and partitions, and 255 character �lenames. Unfortunately, it uses

a linked list to hold its free block and free inode information; this is slightly more memory-e�cient

than using a bitmap, but is a lot more prone to fragmentation. Performance of the extfs drops

seriously after a partition has been used for a while. The linked-list technique is now acknowledged

to be a bad idea, although extfs is still very useable if the partition is defragmented regularly.

Within a couple of weeks of each other, the xiafs and ext2fs �lesystems were announced on an

unsuspecting public. Chaos has reigned ever since.

Xiafs and ext2fs were both intended to provide fast and e�cient alternative �lesystems which

did not su�er from the performance problems of the extfs or the restrictions of the minix fs.

Overview

xiafs was based closely on the original minix fs code, but enhanced to be both faster and less

restrictive. ext2fs was a more ambitious e�ort which was designed to add new features and to take

�lesystems a step forward. It has taken longer to debug ext2fs; they are probably both bug-free now,

but xiafs has been a stable beta release for a lot longer. They both have good support for bad-block

mapping.

The biggest di�erence between the two �lesystems is in their design philosophy. Both �lesystems

were originally designed to �ll the basic requirements of speed and capacity. However, beyond this,

the priority for xiafs was to change as little as possibly of the minix fs, and so to produce a stable

�lesystem; whereas ext2fs was designed from the start to have room to expand.

The net e�ect is that the xiafs kernel code has had no bugs reported since mid-February, whereas

the ext2fs code has taken signi�cantly longer to debug. The ext2fs is now in stable beta release. It

has had much less time to prove its reliability in this state than xiafs; but you get more functionality

out of ext2fs. This is the crux of the choice between the two.

Looking to the future, ext2fs has much more room to expand in than xiafs. There are several

signi�cant enhancements planned to ext2fs, and users will be able to take advantage of the new

systems without reformatting any of their old ext2fs partitions. Upgrades either planned or under

development include transparently compressed �les, POSIX-style access control features, undeletion

of lost �les and fragments (a technique for reducing the disk usage overheads especially for for small

�les).

Xiafs and ext2fs are both signi�cantly faster than the previous minix or extfs �lesystems (the

extfs in particularly would get terribly slow with time). Although tests to date have placed the

ext2fs ahead of the xiafs in terms of speed, the di�erences between them are not generally as

ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION 19

signi�cant as the speedup when compared to the older fs's. Ext2fs seems to su�er less from long-

term fragmentation.

Ext2fs is the standard enhanced �lesystem for SLS; xiafs was adopted as HJ's distribution �lesys-

tem for his base system and rootdisk releases.

Xiafs is pretty stable just now. Extensions to ext2fs are still being actively developed.

Limits

The table below summarizes the di�erences between ext2fs and xiafs.

ext2fs xiafs

Partition size 4 GB 4 GB

File size 4 GB 64 MB

Filename length 255 248

Inodes 2

31

2

31

Inode size 128 B 64 B

Both �lesystems may support, sometime in the future, up to 2 TB partitions in the future (and both

will be compatible with current �lesystem formats). The xiafs �le size limit will rise to 1 GB once

kernel support for larger block sizes is introduced. The xiafs �lename limit can be raised to 255 by

changing a constant and recompiling the kernel.

Ext2fs:

� Pros

{ exible, expandable

{ fast

{ after a crash, lost �les can often be automatically recovered (e2fsck will place them in

/lost+found)

{ is the only �lesystem to support a changeable �lesize limit (through the standard kernel

resource limit mechanism)

{ supports a "valid" ag which is set when the �lesystem is cleanly unmounted, to auto-

matically identify �lesystems which may need repair after a crash

� Cons

{ larger inode overhead (though still insigni�cant against other overheads)

{ some bugs in versions before 0.3 (no bugs known or reported in 0.3, but these are early

days yet...)

� Coming soon

{ POSIX access control lists

{ transparent compressed �le support

20 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

{ fragments

{ large block sizes

{ undelete �les

{ recovery from superblock corruption

Xiafs:

� Pros

{ designed from the start as a minimal but reliable enhancement to the robust minix fs, so

there have been no bugs reported recently

� Cons

{ not as much room for upgrade.

{ generally lower limits on �lesize and name lengths (but see note in the limits section

above)

� Coming soon

{ large block sizes

4.4.4 Making a Filesystem

META: mkfs (minix), mkefs (extfs), mke2fs (ext2fs), mkxfs? (xiafs); also, the front-end that

allows one to say just mkfs for all types

4.4.5 Mounting and Unmounting

Before one can use the contents of disk or partition as a �lesystem, it has to be mounted. This

means that one tells the operating system that one wants to use the �lesystem on the partition

(or oppy, or whatever). The operating system then does various bookkeeping things to make sure

that everything works. Since all �les in UNIX are in a single directory tree, the mount operation

will make it look like the new �lesystem is the contents of an existing subdirectory in some already

mounted �lesystem. For example, one might mount a oppy so that it looks like the contents of the

/mnt directory. The command would be

mount /dev/fd0 /mnt

(/dev/fd0 being the device �le for the oppy drive), and one would then say that \/dev/fd0 is

mounted on /mnt". Then, to look at the contents of the oppy, one would use the command

ls /mnt

just as if /mnt were any random directory. Note the di�erence between the device �le, /dev/fd0,

and the mounted-on directory, /mnt. The device �le gives access to the raw contents of the disk, the

mounted-on directory gives access to the �les on the disk.

ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION 21

The alert reader has already noticed that there is a slight logistical problem caused by the need

to have an existing directory in an already mounted �lesystem before one can mount a new one. How

is the �rst �lesystem (called the root �lesystem, because it contains the root directory) mounted,

since it obviously can't be mounted on another �lesystem? Well, the answer is that it is done by

magic

2

. The root �lesystem is magically mounted at boot time, and one can rely on it to always be

mounted|if the root �lesystem can't be mounted, the system does not boot.

When a �lesystem no longer needs to be mounted, it can be unmounted. This is done with the

umount(8)

3

command. For example, to unmount the oppy in the previous example, one would use

the command

umount /dev/fd0

See the man page for further instructions on how to use the command. It is imperative that you

always unmount a mounted oppy. Don't just pop the oppy out of the drive! Because of disk

caching, the data is not necessarily written to the oppy until you unmount it, so removing the

oppy from the drive too early might cause the contents to become garbled. If you just read from

the oppy, this is not very likely, but if you write, even accidentally, the result may be catastrophic.

If you don't intend to write anything to the �lesystem, use the -r switch for mount to do a

readonly mount. This will make the kernel stop any attempts at writing to the �lesystem, and

will also stop the kernel from updating �le access times in the inodes.

4.5 Using Swap Space

Linux can use either a normal �le in the �lesystem or a separate partition for swap space. A swap

partition is faster, but it is easier to change the size of a swap �le (there's no need to repartition

the whole hard disk, and possibly install everything from scratch). When you know how much swap

space you need, you should go for a swap partition, but if you are uncertain, you can use a swap �le

�rst, use the system for a while so that you can get a feel for how much swap you need, and then

make a swap partition when you're con�dent about its size.

You should also know that Linux supports using several swap partitions and/or swap �les at the

same time. This means that if you only occasionally need unusually much swap space, you can set

up an extra swap �le every such time, instead of keeping the whole amount allocated at the same

time.

4.5.1 Creating a Swap Space

A swap �le is an ordinary �le; it is in no way special to the kernel. The only thing that matters to

the kernel is that it has no holes, and that it is prepared for use with mkswap(8).

The bit about holes is important: UNIX �lesystems usually allow one to create a `hole' in a �le

(this is done with lseek(2); check the manual page), which means that the �lesystem just pretends

2

For more information, see the kernel source or the Kernel Hackers' Guide.

3

It should of course be unmount(8), but the n mysteriously disappeared in the 70's, and hasn't been seen since.

Please return it to Bell Labs, NJ, if you �nd it.

22 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

that at a particular place in the �le there is just zero bytes, but no actual disk sectors are reserved for

that place in the �le (this means that the �le will use a bit less disk space); this happens especially

often for binaries.

The swap �le is used to reserve the disk space so that the kernel does not, when it needs to swap

out a page, have to go through all the things that are necessary when allocating a disk sector to a

�le. The kernel merely uses any sectors that have already been allocated to the �le. Because a hole

in a �le means that there are no disk sectors allocated (for that place in the �le), it is not good for

the kernel to try to use them.

One good wayto create the swap �le, which avoids creating holes, is using the following command:

dd if=/dev/zero of=/swapfile bs=1024 count=N

where N is the size of the swap �le in kilobytes. It is best for N to be a multiple of 4, because the

kernel writes out memory pages, which are 4 kilobytes in size.

A swap partition is also not special in any way. You create is just like any other partition; the

only di�erence is that it is used as a raw partition, that is it will not contain any �lesystem at all.

After you have created a swap �le or a swap partition, you need to write a signature to its

beginning; this contains some administrative information and is used by the kernel. The command

to do this is mkswap(8), used like

mkswap swapspace size

Substitute the name of the swap �le or swap partition for swapspace above, and the size, in kilobytes,

for size. Note that the swap space is still not in use yet.

4.5.2 Putting Swap Space Into Use

META: swapon, swapo�, mount -av and /etc/fstab

4.5.3 Sharing Swap Space With Other Operating Systems

META: mswin, os/2, 386bsd

4.6 Using Raw Floppies

META: actually, any disk; tar, cpio, a�o, dd, others; why are raw disks useful?

4.7 The Bu�er Cache

META: what it is; how it works, and how it a�ects the free memory; why it is bene�cial; when

it is not bene�cial; things to be careful with; sync, /etc/update;

ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION 23

4.8 Allocating Disk Space

4.8.1 Partitioning Schemes

In what way should a hard disk be partitioned? This is a tricky question that requires a bit of

thinking on your part to answer correctly. There is no universally correct way to do it, there are to

many factors involved.

The traditional way is to have a (relatively) small root �lesystem, which contains /bin, /etc,

/dev, /tmp, and other stu� that is needed to boot the system. This way, the root �lesystem (in its

own partition or on its own disk) is all that is needed to bring up the system. The reasoning is that

if the root �lesystem is small and is not heavily used, it is less likely to become corrupt when the

system crashes, and it is therefore easier to �x any problems caused by the crash. The directory tree

below /usr, the users' home directories (often under /home) and the swap space are each in their

own partitions or disks as well.

The problem with having many partitions is that it splits the total amount of free disk space

in many small pieces. Nowadays, when disks and (hopefully) operating systems are more reliable,

many people prefer to have just one partition that holds all their �les. Additionally, it is less painful

to backup (and restore) a small partition.

For a small hard disk (and assuming you don't do kernel development), the best way to go is

probably to have just one partition. For large hard disks, when the problem with split up free

space is practically non-existant, it is probably better to have a few (large) partitions, just in case

something does go wrong. (Note that `small' and `large' are used in a relative sense here; your needs

for disk space decide what the threshold is.)

If you have several disks, you might wish to have the root �lesystem (including /usr) on one,

and the users' home directories on another. (If you have more than two, put programs or home

directories on them as necessary.)

It is a good idea to be prepared to experiment a bit with di�erent partitioning schemes (over

time, not just while �rst installing the system). This is a bit of work, since it essentially requires

you to install the system from scratch several times, but it is the only way to be sure you do it in a

good way.

4.8.2 Space For Files

4.8.3 Swap Space

How much swap space do you need? Some people will tell you that you should allocate twice as

much swap space as you have physical memory, but this is bogus. Here's how to do it:

1. Estimate your total memory needs. This is the largest amount of memory you'll probably need

at a time, that is the sum of the memory requirements of all the programs you want to run

at the same time. For instance, if you want to run X, you should allocate about 8 MB for it,

gcc wants several megabytes (some �les need an unusually large amount, up to several tens of

24 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

megabytes, but usually about four should do), and so on. The kernel will use about a megabyte

by itself, and the usual shells and other small utilities perhaps a few hundred kilobytes (say a

meg together). There is no need to try to be exact, rough estimates are �ne, but you might

want to be on the pessimistic side. Remember that if there are going to be several people

using the system at the same time, they are all going to consume memory. (However, if two

people run the same program at the same time, the total memory consumption is usually not

double, since code pages and shared libraries exist only once.)

2. Add some security to the estimate in step 1. This is because estimates of program sizes will

probably be wrong, because you'll probably forget some programs you want to run, and to

make certain that you have some extra space just in case. A couple of megabytes should be

�ne. (It is better to allocate too much than too little swap space, but there's no need to overdo

it and allocate the whole disk, since unused swap space is wasted space; see later about adding

more swap.) Also, since it is nicer to deal with even numbers, you can round the value up to

the next full megabyte.

3. Based on the computations in steps 1 and 2, you know how much memory you'll be needing in

total. So, in order to allocate swap space, you only need to subtract the size of your physical

memory from the total memory need, and you know how much swap space you need. (On

some versions of UNIX, you need to allocate space for an image of the physical memory as

well, so the amount computed in step 2 is what you need. On these systems, the usable swap

area begins after the size of the physical memory.)

4.8.4 Adding More Disk For Linux

META: also taking some away

4.8.5 Tips For Saving Disk Space

Chapter 5

Directory Tree Overview

META: Give sample contents of important �les, e.g. /etc/passwd, /etc/group.

META: Give a sample listing of sensible ownerships and permissions for all the important

�les, and explain why they are sensible. Explain what must be done in a speci�c way, and what can

be altered to make the system more open or more secure.

META: timezone �les, /etc/skel.

This chapter contains a quick overview of the most important �les and directories on a UNIX

system. It does not go into detail about the contents of �les, only summarizes their purpose, possibly

mentions connections to other �les and programs, and points to the relevant document that describes

things in more detail.

The set of directories and the division of �les between directories is based on an assumption that

some things are on a root �lesystem, the �rst �lesystem that is mounted when when Linux boots,

while others are on other �lesystems, and that some �les need to be accessable before those other

�lesystems are mounted. The `other' �lesystem is usually called /usr, and everything else in the

root directory is assumed to be on the root �lesystem. While this con�guration is not true for all

systems, especially Linux systems, it was true when the directory tree was originally designed in the

early history of UNIX. It is good to understand this, because many things do not otherwise make

much sense (e.g. why both /bin and /usr/bin?).

5.1 The /etc and /usr/etc Directories

The /etc directory contains �les that have to do with system administration, that are required

during bootup or shutdown, that contain system-wide con�guration data or are system-wide startup

scripts.

The /usr/etc directory, on systems where it exists, is similar to /etc, but it typically con-

tains only con�guration �les for programs in /usr/bin, not system-wide things. On some systems,

however, /usr/etc is just a symlink to /etc, in which case both are the same thing.

25

26 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

META: the items below should be sorted

/etc/rc This is a /bin/sh shell script that is automatically run when the system is booted. It should

start the background processes that provide useful services to user programs (e.g. update,

crond, inetd), mount �lesystems, turn on swapping areas, and do other similar tasks. In

some installations /etc/rc.local or /etc/rc.[0-9] are invoked by /etc/rc; the intention is

that all changes that need to be made for a given site are done in those �les so that /etc/rc

can be automatically updated when a new version of the operating system is installed.

META: Describe /etc/rc.[0-9] better: which is what, and so on. Give and explain in detail

a sample /etc/rc (in a subchapter?).

/etc/passwd This is a text �le that contains information about users. See the passwd(5)man page

for more information.

/etc/psdatabase This is used by some versions of the Linux ps(1) command. It contains infor-

mation about where in the kernel memory certain kernel data structures reside. ps(1) reads

that data directly from /dev/kmem, and at least /etc/psdatabase needs to be updated when

a new version of the kernel is used; sometimes ps itself needs recompilation and even changes.

Other versions of ps use the /proc �lesystem, and hence do not need any special attention

when upgrading the kernel.

/etc/disktab I don't know what this is. Presumably some kind of disk parameter table. Doesn't

seem to be used in Linux.

/etc/fdprm Floppy disk parameter table. This �le describes what di�erent oppy disk formats look

like. The program setfdprm(1) looks in this �le to see. See the man page fdprm(5) for more

information.

/etc/fstab This �le lists the �lesystems and swap areas that are mounted by the mount -a com-

mand in /etc/rc. See the mount(8) man page for more information.

/etc/getty This is the program that waits for somebody to log in via a terminal (or virtual console).

It is started automatically by init, once per terminal line (or virtual console) via which it

should be possible to log in. Some \terminal" lines (really, serial lines) might not be intended

for logins, e.g. when a mouse is connected to that line, so getty is not invoked on all lines.

getty waits until somebody enters a password and then runs login(1).

/etc/uugetty Another version of getty. [XXX - what are the di�erences? Is uugetty better for

uucp and dial in/out on the same line? Yes. Is it used anymore? /dev/cua? and so on, after

all.]

/etc/gettydefs On my system this is just a symlink to /etc/gettytab. Presumably some Unices

use gettydefs, others gettytab, and Linux has both names to be compatible with both

camps.

/etc/gettytab Describes how getty should use the terminal lines (speeds, parity settings, and so

on).

META: I think this is something like it, gotta �nd a man page �rst. (See uucp chapter.)

ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION 27

/etc/group This is a �le similar to /etc/passwd, but it describes groups instead of users. See the

group(5) man page for more information.

/etc/init This is the program that is started as process 1 by the kernel at boot time. After init

is started, the kernel booting is done. init then runs /etc/rc, starts the gettys, and so on.

/etc/inittab This �le lists the gettys that init starts.

/etc/issue This �le contains the text that getty outputs before the login prompt.

/etc/lilo This directory contains �les for LILO, a program that allows Linux to boot from a

harddisk. See the LILO documentation for more information.

/etc/magic This is the con�guration �le for file(1). It contains the descriptions of various �le

formats based on which file guesses the type of the �le.

/etc/motd This contains themessage of the day that is automatically copied to the users terminal

after his password is validated. It typically contains important messages from the sysadmin,

such as warnings about downtime in the future. It is also common to have a short description

of the type of the computer and the operating system.

META: .hushlogin?

/etc/mtab This �le contains the currently mounted �lesystems. It is set up by /etc/rc and main-

tained by the mount(8) and umount(8) commands, and used when a list of mounted �lesystems

is needed, for example by df(1).

/etc/mtools This is a con�guration �le for mtools, a package for using MS-DOS format disks

with UNIX. mtools is typically unnecessary with Linux, since Linux itself understands the

MS-DOS �lesystem (although that driver can be con�gured out when compiling the kernel, in

which case mtools is needed).

/etc/shadow This �le contains the shadow passwords on systems where the shadow password soft-

ware is installed. Shadow passwords mean that the password is not stored to the world-readable

/etc/passwd �le, but into /etc/shadow which only root can read. This way it is not possible

to get the encrypted version of a password, and hence not possible to decipher it either.

/etc/login.defs This is a con�guration �le for the login(1) command.

/etc/printcap Like /etc/termcap, but intended for printers. Di�erent syntax.

/etc/profile This �le is sourced at login time by the Bourne shells, /bin/sh (and /bin/bash;

although they are the same on most Linux systems), before the user's own .profile �le.

This allows the sysadmin to introduce global settings easily.

/etc/securetty Identi�es secure terminals. root can login only from the terminals listed in this

�le. Typically only the virtual consoles are listed, so that it becomes impossible (or at least

much harder) to gain superuser privileges by breaking into a system over a modemor a network.

/etc/shells Lists trusted shells. The chsh(1) command allows users to change their login shell

only to shells listed in this �le.

28 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

/etc/startcons I don't know, looks like a script to set colors on VCs on my system.

/etc/termcap The terminal capability database. Describes by what \escape sequences" various

terminals can be controlled. Programs are written so that instead of directly outputting an

escape sequence that only works on a particular brand of terminal, they look up the correct

sequence to do whatever it is they want to do in /etc/termcap. As a result most programs

work with most kinds of terminals. /etc/termcap is a text �le; see termcap(5) for more

information.

/etc/ttytype Lists default terminal types for terminal lines. Used by login(1).

/etc/update This is one of the background programs that is started by /etc/rc. It syncs (forces

all unwritten data in the bu�er cache to be physically written) every 30 seconds. The idea is

to make certain that if there is a power failure, a kernel panic, or some other horrible thing

that completely ruins everything, you won't lose more than 30 seconds' worth of writes at the

most.

/etc/utmp This is a binary �le that records information about who, if anybody, is currently logged

in on each terminal, and some other information about the login. Each terminal has its own

record in the �le. When a user logs in, login(1) updates the record for the terminal in

question to show that somebody is logged in, and when he logs out, init(8) records that

information.

/etc/wtmp This is like /etc/utmp, except that all the records written are appended instead of

overwritten on the existing records. This means that /etc/wtmp grows inde�nitely, although

slowly. If and when it grows big enough, it will have to be trimmed.

/etc/ftpusers, /etc/ftpaccess, /etc/rpc, /etc/rpcinit, /etc/exports These have to do with

networking. See the Linux Network Administrator's Guide for more information.

5.2 Devices, /dev

The /dev directory contains the special device �les for all the devices. See the man pages for

descriptions for which �le stands for which device and what the device is.

5.3 The Program Directories, /bin, /usr/bin, and Others

Programs in UNIX are usually scattered in many directories. The two most important ones are

/bin and /usr/bin. Traditionally, all programs intended for the user (as opposed to the sysadmin)

to run are in these directories. /bin contains the stu� that is needed on the root partition, that is

everything which is needed before /usr is mounted (assuming it is on a di�erent partition), and also

tools useful for recovering from disasters. /usr/bin contains most other things.

Usually /bin and /usr/bin contain programs that are part of the operating system, i.e. they

are provided by the OS vendor, not by the user or a third party. Most systems have a place where

ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION 29

locally written software, and freeware snarfed from Usenet or other places is installed. This is

typically called /usr/local, with subdirectories bin, etc, lib, and man (and others as necessary).

This way those programs are not in the way when a new version of the operating system is installed,

especially since the upgrade procedure might wipe out all of /bin and /usr/bin. (/usr/local

would then preferably be either a mount point or a symbolink link so that it is not erased during

the upgrade.)

In addition to these, many people prefer to install large packages in their own directories so that

they can be easily uninstalled, and so that they don't have to worry about overwriting existing �les

from other packages when installing. It can also be nice to have all �les that belong to a package in

a central place. An example of this is that, on Linux, X and X programs are usually installed to

/usr/X386, which is a similar directory tree to /usr/local. TeX and GNU Emacs are also usually

installed this way on Linux.

On some systems

1

with shared libraries, the directory /sbin holds statically linked versions of

some of the most important programs. The intent is that if the shared library images become corrupt

or are accidentally removed, it is still possible to �x things without having to boot. Typical binaries

would be ln, cp, mount, and sync.

See section 5.5 for an example of how the shared libraries might become fouled up.

The drawback of /sbin is that statically linked binaries take a lot more disk space. When a

binary of ln might be a couple of kilobytes when linked with shared libraries, it might be a couple of

hundred kilobytes if linked statically. If you are willing to have to boot if you mess up your shared

libraries|and have an emergency boot disk always available|it is never necessary to have /sbin.

If you can't a�ord to boot, and you can a�ord the disk space, then /sbin is a very good idea. There

is not, however, a single answer that is correct for everyone on this issue.

5.4 The /usr/lib Directory

The /usr/lib directory contains code libraries, con�guration and data �les for individual programs,

auxiliary programs that are only invoked by other programs, and other stu� like that. The contents

are pretty varied. Some programs want to have their support �les directly in /usr/lib, some use a

subdirectory below that.

/usr/lib is used only by programs in /usr/bin (programs in /bin shouldn't need /usr/lib,

since /usr might not have been mounted). Programs in /usr/local/bin use /usr/local/lib, and

programs that are installed in their own directory tree (like X in /usr/X386) use a place in that tree

(/usr/X386/lib).

Of the �les in /usr/lib, �les named libsomething.a are usually libraries of subroutines in some

programming language. The most important ones are libc.a, the standard C library (the one that

contains printf, strcpy; everything except math stu�), libm.a (the math stu�), and libg.a (a

debugging version of libc.a). Note that on Linux there are several versions of the C libraries,

static, and two types of shared libraries. The �les in /usr/lib are the static versions, the shared

1

SunOS, and some Linux distributions at least

30 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

versions are in /usr/lib/shlib (the location has changed during the development of Linux, and

may change again).

5.5 Shared Library Images, /lib

The /lib directory contains the shared images of the shared libraries, that is the actual machine

code that is run when a routine in a shared library is called. They are not in /usr/lib because

/usr can be on a di�erent partition and might not be mounted when the shared images are needed

(e.g. by programs in /bin).

A shared library usually has a name such as /lib/libc.so.4.3.2, which in this case would

indicate version 4.3.2 of the standard C library. The .so bit indicates that it is a shared library

image (\shared object", if you prefer).

There can be several versions of a shared library installed at the same time. A typical reason

for this is that when a shared library is upgraded, the old version is usually kept around until the

new version has proved to be reliable. Also, some programs are linked so that they require a speci�c

version of a shared library. Most programs, however, are linked to use a name like /lib/libc.so.4,

i.e. using only the major version number. That name is then actually a symlink to whatever version

of the shared library that is installed and intended to be used on the system. The contents of /lib

might then look like

cpp -> /usr/lib/gcc-lib/i386-linux/2.3.3/cpp* libc.so.4 -> libc.so.4.3.2* libc.so.4.3.2*

libm.so.4 -> libm.so.4.3.2* libm.so.4.0* libm.so.4.3.2*

Note that there seems to be two versions of the C math library, libm.so.4.0 and libm.so.4.3.2.

The symlink libm.so.4 points at the latter, so that's what gets used unless a program explicitly

requires the other one. The reason why both versions are on the disk might be that some program

that is used on the system does indeed require that version.

2

A shared library image can be updated by shutting down the system, booting with a special boot

oppy, or by some other means that doesn't mount the normal root �lesystem, and then copying the

new shared library image to the /lib directory and �xing up the symlink. The system can then be

brought up in a normal manner. This procedure avoids the problems described below if something

goes wrong during the update, since the shared library images on the partition that is being updated

aren't ever used.

This is a bit work, however, so the way it is actually done in practice is to do it while the system

is up and running. There is no problem with this, except for a distinct possibility of making it

impossible to run any program that uses a shared library, if you make a mistake. The correct way

to do it is

ln -sf /lib/libc.so.new /lib/libc.so.major

with appropriate values substituted for new andmajor. Note that it is imperative that the operation

of replacing the old link with the new one is done atomically, in one operation, not as two separate

commands. The following is an incorrect way of updating the link:

2

Yup, that's the reason all right. I should know, it's my system: : :

ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION 31

rm -f /lib/libc.so.major DON'T DO THIS

ln -s /lib/libc.so.new /lib/libc.so.major

The problem with the above two commands is that what happens after the rm? When ln starts it

tries to use the shared library /lib/libc.so.4, but that was just deleted! Not only can't you create

the new link, you can't run any other program that uses the shared library either! If you reboot and

use a di�erent root partition (and therefore a di�erent set of shared libraries) to do the update, or

if you use some carefully selected statically linked binaries (ln comes to mind), you can reduce the

probability of this problem, if you are afraid you are going to make the mistake.

META: �xing the missing link

5.6 C/C++ Programming, /usr/include, /usr/g++include

META: C++ should be typeset prettier.

The /usr/include directory contains the standard headers for the C programming language, or

at least most of them (see GCC documentation for details), /usr/g++include similar headers for

C++. (If this doesn't make any sense to you, don't worry, you can probably ignore it in that case.)

The symbolic links /usr/include/asm and /usr/include/linux point to the similarly named

directories in the kernel source tree (see /usr/src) for whatever kernel version you are running.

They are needed because some type declarations are kernel version dependent. (You may need to

update these links when you upgrade the kernel.)

5.7 Source Codes, /usr/src

The customary place to keep source code for the kernel and standard programs is /usr/src. In

particular, /usr/src/linux is usually the directory with the source code for the running version

of the kernel. Kernel source code, or at least the headers

3

, is needed because the headers of the C

library refer to headers in the kernel source for kernel version dependent information, such as some

types. Because of this, /usr/include/asm and /usr/include/linux are typically symbolic links

to /usr/src/linux/include/asm and linux, respectively.

5.8 Administrativia, /usr/adm

The /usr/adm directory contains administrative log �les generated by various demons and system

programs.

3

If you're short of disk space, deleting everything but the headers can save a couple of megabytes.

32 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

5.9 On-line Manuals, /usr/man

On-line man pages are stored below /usr/man. Well, at least for programs in /bin and /usr/bin,

programs installed elsewhere (/usr/local) often get their man pages installed similarly elsewhere

as well, but not always.

UNIX man pages are divided into eight numbered chapters (after the chapters in the original

UNIX manuals). Each chapter has a subdirectory below /usr/man, called man0 where 0 stands for

the number of the chapter, and a man page is installed into the appropriate subdirectory. (Man

page directories in other places, e.g. /usr/local/man, usually have a similar organization.)

META: linux has chapter 9 as well?

In addition to the troff(1) source code for the man page in /usr/man/man?, its formatted

version (formatted for a simple printer or a text screen) is stored into /usr/man/cat0, where 0

again stands for the chapter. This way, if you need the source (in order to print it on a laser printer,

for example), you can get it from /usr/man/man?, and if you are satis�ed with the pre-formatted

version, you can get it quickly from /usr/man/cat?. The man(1) command uses the correct one

automatically: the formatted one if it exists, else it formats the unformatted one on the y, saving

the formatted version in the appropriate place.

Man pages can easily take up a lot of space, so they are sometimes stored in compressed format.

On some systems, the man program understands compressed �les and automatically uncompresses

the man page while it is read.

Another way to save space is to not have both formatted and unformatted man pages installed.

(Or to not have them installed at all, of course.)

5.10 More Manuals, /usr/info

Besides the traditional documentation form for UNIX, man pages, Linux also uses the Info sys-

tem develop by the GNU Project (based on the ITS info system). See Texinfo documentation for

more information. The formatted info documents are put into /usr/info (or /usr/emacs/info,

or /usr/lib/emacs/info, or /usr/local/emacs/info; the possibilities are almost endless, but

/usr/info is usually either the place itself, or a symlink to the place). The �le dir in the info direc-

tory is the toplevel, or directory, node and should be edited to contain a link to the new document

when one is added to the directory.

5.11 /home, Sweet /home

Users' home directories are placed in di�erent places on di�erent systems. The oldest convention

was to put them in /usr, but that is confusing since /usr contains a lot of other things as well.

/home is one common place, and the place most Linuxers seem to prefer (although some prefer to

call it /users, /usr/homes, or something else that isn't /usr.) The home directory of user liw

would then be /home/liw.

ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION 33

5.12 Temporary Files, /tmp and /usr/tmp

META: /tmp on root can be a bad idea

Many programs need to create temporary �les. In order not to �ll the users' directories (and disks,

on systems where home directories are on di�erent disks) with such, sometimes large and plentiful,

�les, the directories /tmp and /usr/tmp exist. Most programs automatically place temporary �les

in one of these. Conventions di�er from system to system, but generally it is considered better for

programs to use /usr/tmp, because then the root �lesystem (where /tmp resides) need not be as

large. In fact, some systems even make /tmp a symbolic link to /usr/tmp (although this only works

after /usr has been mounted) to force temporary �les out of the root �lesystem (this greatly reduces

the size requirements for the root �lesystem). Some large systems mount an especially fast disk on

/tmp (or /usr/tmp); temporary �les are usually used for a short time only, or as an extension to

physical memory, so having /tmp be fast hopefully makes the system faster on the whole.

On many systems, /tmp is automatically cleaned at boot time, so that the temporary �les won't

remain and take up space when they are no longer needed. /usr/tmp is usually not cleaned that

way. This is done in /etc/rc or one of the scripts it calls.

5.13 The /mnt and /swap Directories

The /mnt directory is the customary mounting point for temporarily mounted �lesystems in Linux.

It is an empty directory, and the intent is that if you have to, for instance, mount a oppy, you

can use /mnt as its mount point and don't have to create a new directory each time. It is just for

convenience, no programs contain embedded information about /mnt. Some people call their /mnt

something else, such as /floppy. Others prefer to have subdirectories below /mnt, so that they can

have several mount points, e.g. /mnt/a for the �rst oppy drive, or /mnt/dos for the MS-DOS hard

disk partition.

The /swap directory is similarly only a commonly used mount point. As the name implies, it is

intended as the mount point for the swap partition.

5.14 Process Information, /proc

The /proc directory is where the proc �lesystem is usually mounted. The proc �lesystem provides

a way in which one can get information about the processes running without having to poke in kernel

memory to �nd it. Poking in kernel memory is both a security hole and inconvenient, since the places

and methods for poking vary from kernel version to kernel version, not to mention operating system

to operating system. See the documentation for the proc �lesystem for more information.

34 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

5.15 The /install Directory

The /install directory is speci�c to the SLS distribution of Linux. It contains �les needed for

uninstallation of packages installed with the SLS installation tools.

Chapter 6

Boots, Shutdowns, Logins, and

Background Demons

This sections explains what goes on when a Linux system is turned on and o�, and how it should

be done properly. Logging in and background demons are somewhat related to this, so they are also

covered here.

META: don't power cycle too often

6.1 Booting

You can boot Linux either from a oppy or from the hard disk. The installation section in the

Getting Started guide tells you how to install Linux so you can boot it the way you want to.

When the computer is booted, the BIOS will do various tests to check that everything looks all-

right

1

, and will then start the actual booting. It will choose a disk drive (typically the �rst oppy

drive, if there is a oppy inserted, otherwise the �rst hard disk, if one is installed in the computer)

and read its very �rst sector. This is called the boot sector; for hard disk, it is also called the

master boot record (since a hard disk can contain several partitions, each with their own boot

sectors).

The boot sector contains a small program (small enough to �t into one sector) whose responsibil-

ity it is to read the actual operating system from the disk and start it. When booting Linux from a

oppy disk, the boot sector contains code that just reads the �rst 512 kB to a predetermined place

in memory. (On a Linux boot oppy, there is no �lesystem, the kernel is just stored in consecutive

sectors, since this simpli�es the boot process.)

When booting from the hard disk, the code in the master boot record will examine the partition

table, identify the active partition (the partition that is marked to be bootable), read the boot sector

from that partition, and then start the code in that boot sector. The code in the partition's boot

1

These is called the power on self test, or POST for short.

35

36 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

sector does what a oppy disk's boot sector does: it will read in the kernel from the partition and

start it. The details vary, however, since it is generally not useful to have a separate partition for

just the kernel image, so the code in the partition's boot sector can't just read the disk in sequental

order, it has to �nd the sectors whereever the �lesystem has put them. There are several ways

around this problem, but the most common way is to use LILO. (The details about how to do this

are irrelevant for this discussion, however; see the LILO documentation for more information.)

When booting with LILO, it will normally go right ahead and read in and boot the default kernel.

It is also possible to con�gure LILO to be able to one of several kernels, or even other operating

systems than Linux, and it is possible for the user to choose which kernel or operating system is

to be booted at boot time. LILO can be con�gured so that if one holds down the alt , shift , or

ctrl key at boot time (i.e. when LILO is loaded), LILO will ask what is to be booted and not boot

the default right away. Alternatively, LILO can be con�gured so that it will always ask, with an

optional timeout that will cause the default kernel to be booted.

The are other boot loaders than LILO. However, since LILO has been written especially for

Linux, it has some features that are useful and that only it provides, for example the ability pass

arguments to the kernel at boot time, or overriding some con�guration options built into the kernel.

Hence, it is usually the best choice. Among the alternatives are bootlin and bootactv

2

Booting from oppy and booting hard disk have both their advantages, but generally booting

from the hard disk is easier, since it avoids the hassle of playing around with oppies. It is also

faster. However, it can be more troublesome to install the system so it can boot from the hard disk,

so many people will �rst boot from oppy, then, when the system is otherwise installed and working

well, will install LILO and start booting from the hard disk.

After the Linux kernel has been read into the memory, by whatever means, and is started for

real, roughly the following things happen:

� If the kernel was installed compressed, it will �rst uncompress itself. (The beginning of the

compressed kernel contains a small, uncompressed program that does this.)

� If you have a super-VGA card that Linux thinks it recognizes and that has some special text

modes (such as 100 columns by 40 rows

3

), Linux asks you which mode you want to use.

(During the kernel compilation, it is possible to preset a video mode, so that this is never

asked.)

� After this the kernel checks what other hardware there is (hard disks, oppies, network

adapters: : :), and con�gures some of its device drivers appropriately; while it does this, it

outputs messages about its �ndings, for example when I boot, I it looks like this:

LILO boot:

Loading linux.

Console: colour EGA+ 80x25, 8 virtual consoles

Serial driver version 3.94 with no serial options enabled

tty00 at 0x03f8 (irq = 4) is a 16450

2

I don't know much about any of the alternatives. If and when I learn, I will add more descriptions.

3

Incidentally, this is the mode preferred by Linus himself.

ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION 37

tty01 at 0x02f8 (irq = 3) is a 16450

lp_init: lp1 exists (0), using polling driver

Memory: 7332k/8192k available (300k kernel code, 384k reserved, 176k data)

Floppy drive(s): fd0 is 1.44M, fd1 is 1.2M

Loopback device init

Warning WD8013 board not found at i/o = 280.

Math coprocessor using irq13 error reporting.

Partition check:

hda: hda1 hda2 hda3

VFS: Mounted root (ext filesystem).

Linux version 0.99.pl9-1 (root@haven) 05/01/93 14:12:20

(The exact texts are di�erent on di�erent systems, depending on the hardware, the version of

Linux being used, and how it has been con�gured.)

� After all this con�gration business is complete, Linux switches the processor into protected

mode. The switch is not visible to the user, but is an important step for the kernel. A big

leap for the kernel, a small step for the userkind.

� Then the kernel will try to mount the root �lesystem. The place|which oppy or partition|is

con�gurable at compilation time, with rdev (see man page), or with LILO (see LILO documen-

tation). The �lesystem type is detected automatically. If the mounting of the root �lesystem

fails, the kernel panics and halts the system (there isn't much one can do, anyway).

� After this the kernel starts the program /etc/init in the background (this will always become

process number 1), which runs the shell script /etc/rc. The script will start all the background

programs that take care of things like printer queues and such. It runs some other important

commands as well.

META: Need to discuss various avor of init.

� The init program then starts a getty for virtual consoles and serial lines as con�gured in

/etc/gettytabs. getty is the program which lets people log in via virtual consoles and serial

terminals.

� After this, the boot is complete, and the system is up and running normally.

6.2 Shutting Down

It is important to follow the correct procedures when you shut down a Linux system. If you do not

do so, your �lesystems may become trashed and/or the �les may become scrambled. This is because

Linux has a disk cache that won't write things to disk at once, but only at intervals. This greatly

improves performance but also means that if you just turn o� the power at a whim the cache may

hold a lot of data and that what is on the disk may not be a fully working �lesystem (because only

some things have been written to the disk).

Another reason against just ipping the power switch is that in a multi-tasking system there can

be lots of things going on in the background, and shutting the power can be quite disastrous. This

is especially true for machines that several people use at the same time.

38 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

So, how does one shut down a Linux system properly? The program for doing this is called

/bin/shutdown or /etc/shutdown (the place varies between systems).. There are two popular ways

of using it.

If you are running a system where you are the only user, the usual way of using shutdown is to

quit all running programs, log out on all virtual consoles, log in as root on one of them (or stay logged

in as root if you already are, but you should change to the root directory, to avoid problems with

unmounting), then give the command shutdown -q now (substitute now for a number in minutes if

you want a delay, though you usually don't on a single user system).

Alternatively, if your system has many users, the usual way is to use the command shutdown 10,

and give a short explanation of why the system is shutting down when prompted to do so. This will

warn everybody that the system will shut down in ten minutes (although you can choose another

time if you want, of course) and that they'd better get lost or loose data (perhaps not in these words).

The warning is automatically repeated a few times before the boot, with shorter and shorter intervals

as the time runs out.

META: /etc/shutdown.rc

Using either method, when the shutting down starts after any delays, all �lesystems (except the

root one) are unmounted, user processes (if anybody is still logged in) are killed, demons are shut

down, and generally everything settles down. When that is done, shutdown prints out a message

that you can power down the machine. Then, and only then, should you move your �ngers towards

the on/o� button.

There is another similar command, called reboot, which is identical to shutdown, but it boots

the machine right away instead of asking you to power down the system. Use reboot instead of

shutdown if that's what you want to do.

META: halt, fastboot, options to shutdown

Sometimes, although rarely on any good system, it is impossible to shut down properly. For

instance, if the kernel panics and crashes and burns and generally misbehaves, it might be completely

impossible to give any new commands, hence shutting down properly is somewhat di�cult, and just

about everything you can do is hope that nothing has been too severly damaged and turn o� the

power. If the troubles are a bit less severe (say, somebody merely hit your keyboard with an axe),

and the kernel and the update program still run normally, it is probably a good idea to wait a couple

of minutes to give update a chance to sync the disks, and only cut the power after that.

Some people like to shut down using the command sync three times, waiting for the disk I/O to

stop, then turn o� the power. If there are no running programs, this is about equivalent to using

shutdown. However, it does not unmount any �lesystems (this can lead to problems with the ext2fs

\clean �lesystem" ag). The triple-sync method is not recommended.

(In case you're wondering: the reason for three syncs is that in the early days of UNIX, when

the commands where typed separately, that usually gave su�cient time for most disk I/O to be

�nished.)

ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION 39

6.3 Background Processes and Demons

A demon or daemon is a program running in the background, invisibly to users, that provides the

system with some sort of useful service. From The Jargon File (also published as a book under the

name The New Hacker's Dictionary):

daemon /day'mn/ or /dee'mn/ [from the mythological meaning, later rationalized as

the acronym `Disk And Execution MONitor'] n. A program that is not invoked explicitly,

but lies dormant waiting for some condition(s) to occur. The idea is that the perpetrator

of the condition need not be aware that a daemon is lurking (though often a program

will commit an action only because it knows that it will implicitly invoke a daemon).

For example, under ITS writing a �le on the LPT spooler's directory would invoke

the spooling daemon, which would then print the �le. The advantage is that programs

wanting (in this example) �les printed need neither compete for access to nor understand

any idiosyncrasies of the LPT. They simply enter their implicit requests and let the

daemon decide what to do with them. Daemons are usually spawned automatically by

the system, and may either live forever or be regenerated at intervals.

Daemon and demon are often used interchangeably, but seem to have distinct con-

notations. The term `daemon' was introduced to computing by CTSS people (who

pronounced it /dee'mon/) and used it to refer to what ITS called a dragon. Although

the meaning and the pronunciation have drifted, we think this glossary reects current

(1993) usage.

demon n. 1. [MIT] A portion of a program that is not invoked explicitly, but that

lies dormant waiting for some condition(s) to occur. See daemon. The distinction is

that demons are usually processes within a program, while daemons are usually programs

running on an operating system. 2. [outside MIT] Often used equivalently to daemon|

especially in the UNIX world, where the latter spelling and pronunciation is considered

mildly archaic.

Demons in sense 1 are particularly common in AI programs. For example, a knowledge-

manipulation program might implement inference rules as demons. Whenever a new

piece of knowledge was added, various demons would activate (which demons depends

on the particular piece of data) and would create additional pieces of knowledge by

applying their respective inference rules to the original piece. These new pieces could

in turn activate more demons as the inferences �ltered down through chains of logic.

Meanwhile, the main program could continue with whatever its primary task was.

The most basic background process, but still an important one, is /etc/update, which does a

sync(2) every 30 seconds.

Other important demons are crond and syslogd. See their man pages for more information.

META: should give more examples

40 ALPHA VERSION|TRUST THIS AND DIE|ALPHA VERSION

6.4 Logging In

The login: prompt on the terminal is written by getty. It reads the username, then executes the

login(1) program, which reads the password (if a password is required), and starts the shell, and

the shell will do whatever it will do. If the �le /etc/nologin exists, logins are disabled. That �le

is typically created by shutdown(8) and relatives.

META: much more detail

